Unsupported browser

For a better experience, please update your browser to its latest version.

Your browser appears to have cookies disabled. For the best experience of this website, please enable cookies in your browser

We'll assume we have your consent to use cookies, for example so you won't need to log in each time you visit our site.
Learn more

New test chamber to boost geotechnical research

US-based Purdue University has developed a new test chamber which it says allows engineers to precisely simulate soil-structure interactions during installation of piles and other structural elements.

According to the university, the test chamber will be a key research tool that could improve design and construction processes of everything from “buildings and bridges to offshore wind turbines”.

“The system can be used to study many types of geotechnical structures during both their construction and service life,” said Purdue University professor of civil engineering Rodrigo Salgado. “The nice thing about the chamber is that it can be used to study many geotechnical problems for which there are neither experimental data nor theoretical solutions.”

The system consists of a half-circle-shaped chamber 1.2m tall and 1.6m wide with a transparent window in the side. A series of images is taken with cameras and a digital microscope as the cone penetrometer probe is pushed into the sand. The sand contains coloured particles that allow researchers to track the movement of soil particles with a technique called digital image correlation (DIC).

The researchers also developed a mechanism that precisely controls the density of the soil by uniformly “raining” the sand into the chamber through holes in a disc-shaped “pluviator.”

Researchers at the university have used cone penetration testing to demonstrate the system.

“One limitation of current methods of interpreting cone penetration is that there is “no rigorous theoretical solution of the penetration problem,” Salgado said. “The problem is complicated by the fact that soil sometimes behaves as a solid - when stresses are below certain limits - and sometimes as a fluid, when those limits are exceeded.”

Experiments using the chamber will provide data for development of models and also to validate new models. Images were shown to precisely track the displacement of soil in the cone penetration experiments.

“The DIC method allows you to model it from an experimental viewpoint because you can actually see what’s happening so you can track particle groupings in images, calculate deformations, how much flow has happened, and so on,” Salgado said.

It took about five years to design and build the chamber, which was challenging because elements of the system must remain perfectly aligned while objects are forced at high pressure into the soil sample. Another challenge was integrating the transparent window, which is made of 75mm-thick Plexiglas.

“This was all done from scratch, so we had to spend a lot of time on the details,” Purdue University professor of civil engineering Monica Prezzi said.

Research findings revealed new details about how the cone penetration tip displaces soil differently at specific depths.

“Until now, nobody has been able to measure the displacement and deformation field around the cone,” Salgado said. “So this is the first time we can actually visualize that.”

“You can make the case that if you know things with a lot more accuracy and precision and you understand them on a fundamental level you will prevent failures, and you also do things more economically.”

According to Prezzi, offshore structures often are founded on carbonate sand deposits, which undergo much more severe “particle crushing” than silica sands upon loading. Properly designing pile foundations for platforms and wind turbines is essential for safe and economical energy production in onshore and offshore environments.

“The challenges posed by carbonate sands, due to their crushability and resulting different mechanical response, are well illustrated by the case of Woodside’s North Ranking A platform in Western Australia,” she said. “Overestimation of pile capacity from designing in carbonate sand using methods developed for silica sand was a costly lesson, with AUS$340M (£165M) spent on remedial work.

“Accurate testing data might have prevented the failure and avoided expensive repairs.”

The new chamber has attracted researchers and civil engineering students from around the world. Six undergraduate students and five doctoral students are working in experimental programmes that use the chamber.

The chamber is the first such large-scale system for geotechnical research, enabling the study of problems with axial symmetry, “or symmetry with respect to plane” that would not otherwise be possible, according to Prezzi.

Have your say

You must sign in to make a comment

Please remember that the submission of any material is governed by our Terms and Conditions and by submitting material you confirm your agreement to these Terms and Conditions. Links may be included in your comments but HTML is not permitted.